人脸识别对比
随着计算机技术、图像处理技术、模式识别技术等技术的快速发展,人们开发了指纹识别、声音识别、掌形识别、签名识别、虹膜识别等多种生物识别技术,目前许多技术都己经成熟并得以应用。其中最为典型的便是人脸识别技术,其引领行业创新发展。
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的崭新的生物特征识别技术。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更等场所。
人脸识别是机器视觉和模式识别领域最富有挑战性的课题之一,同时也具有较为广泛的应用意义。人脸识别技术是一个非常活跃的研究领域,它覆盖了数字图像处理、模式识别、计算机视觉、神经网络、心理学、生理学、数学等诸多学科的内容。
人脸识别考勤原理示意图
人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似度值,最终搜索到最佳匹配人脸特征模板,并因此确定一个人的身份信息。
广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括图像采集、人脸检测、特征建模、比对辨识、身份确认等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。
随着各项技术的更新换代,新一代人脸识别技术将着重在基于视觉认知机理的多信息融合人脸表示方法、基于概率图模型的鲁棒匹配算法以及基于Hashing的快速比对、查询算法等方向寻求新的突破。届时,在环境、仪容、年龄的适应性以及识别速度方面将会有大幅度的改善,而人脸识别的用户体验将更加良好,应用将更加广泛,我们可以畅想其美好的未来了。