石鑫华视觉 手机微信QQ:13450001061

视觉技术

射电天文学

文章来源:石鑫华视觉网时间:2022-08-01 11:47:48 点击:333

射电天文学

石鑫华机器视觉网:无线电天文学是天文学的一个分支,通过电磁波频谱以无线电频率研究天体。无线电天文学的技术与光学相似,但是无线电望远镜因为观察的波长较长,所以更为巨大。这个领域的起源肇因于发现多数的天体不仅辐射出可见光,也发射出无线电波。

image.png

在美国新墨西哥州的无线电干涉仪:甚大天线阵Very Large Array。

 

历史

在发现天体会发射无线电波之前,就已经有天体可能也会发射无线电波的想法。在1860年代,詹姆斯·克拉克·麦克斯韦的麦克斯韦方程组就已经显示来自恒星的电磁波辐射可以有任何的波长,而不会仅仅是可见光。一些著名科学家和实验者,如爱迪生、奥利弗·洛奇和马克斯·普朗克都预言太阳应该会发射出无线电波。洛奇曾尝试观察太阳的无线电信号,但局限于当时仪器技术的极限而未能成功。

最早辨识出的天文学无线电波源是偶然发现造成的意外收获。在1930年代的早期,美国贝尔电话公司的一位工程师卡尔·央斯基在使用巨大的定向天线研究越洋无线电话的声音在短波上受到的静电干扰时,他注意到以纸带记录器记下的类比讯号,持续的有着来源不明但会一直重复的讯号。由于这个讯号每天有一个峰值,因此央斯基起初怀疑干扰的来源是太阳。持续的分析显示,来源不随着太阳的出没变化,而是以23小时56分的周期重复著,这个特征显示来源是一个固定在天球上的天体,才会与恒星时同步转动。通过它的观测和与光学天文的星图比对,央斯基认为辐射是来自银河,并且朝向中心星座的人马座方向最强。他在1933年公布了这项发现,央斯基本想再进一步的详细研究来自银河的无线电波,但贝尔实验室重新分配了另一项工作给央斯基,使它不能继续在天文学的领域内完成进一步的工作。

1937年,格罗特·雷伯修建了一架9米直径的抛物面碟形无线电望远镜,成为无线电天文学的先驱。他以仪器重做了央斯基早期的工作和一些简单的工作,也进行了第一次的无线电频率巡天。在1942年2月27日,英国陆军的研究官员J.S. Hey发现太阳散发出无线电波,开始协助无线电天文学的推展。 在1950年代初期,英国剑桥大学的马丁·赖尔和安东尼·休伊什使用剑桥干涉仪描绘天空的无线电图,制做了有名的2C和3C无线电源巡天星表。

 

技术

无线电天文学家使用不同形式的技术在无线电光谱上观测天体。仪器也许只是简单的针对一个能量充沛的无线电源,分析它所发射出来的是何种型态的辐射。图像较详细的天空区域,会有重叠的扫描影像可以被纪录和拼合(马赛克)成单一的影像。使用的仪器种类取决于需要的信号强度和需要的详细的程度。

射电望远镜

image.png

射电望远镜图像

image.png

哈勃太空望远镜拍摄的星系M87光学影像,使用VLA干涉仪拍到的同一星系,以及使用VLBA获得的中心区域影像,这些天线分别位在美国、德国、意大利、芬兰、瑞典和西班牙。颗粒的喷流被怀疑是由位在星系中心的黑洞提供的动力造成的。

image.png

利用无线电技术测得的宇宙微波背景辐射资料转换成的图像。

电波望远镜需要如此的大是因为需要接受信号和获得高的信噪比,也因为角分辨力是" 物镜 "直径的函数,与被观测的电磁辐射波长的比例,相较之下电波望远镜就必需比光学望远镜大上许多。例如,一架1米口径的光学望远镜是观测的光波波长的200万倍,解析力是数个弧秒;而一架盘面大上许多倍的电波望远镜,依据他所观测的波长,也许只能分辨满月(30弧分)大小的天体。

 

发展

射电天文学为天文知识带来了相当的进展,特别是好几种天体的新发现,包括脉冲星、类星体和活动星系。这几种天体的表现可算得上宇宙中最激烈、能量最高的物理活动。

射电天文学测量了星系的旋转速度,发现星系中有大量物质是看不见的,但是它们的引力是可察觉的,这就是暗物质。

宇宙微波背景辐射是射电天文学上的一个重要发现,它为大爆炸理论提供了有力的支持。

射电天文望远镜也用来研究离地球近得多的东西,包括太阳活动、太阳系行星的表面。

首页
84162741QQ
联系