石鑫华视觉 手机微信QQ:13450001061 / 18038383457

视觉技术

人工智能

文章来源:石鑫华视觉网时间:2022-07-04 15:41:37 点击:386

人工智能

什么是人工智能

人工智能(英语:Artificial Intelligence, AI)有时也称作机器智能,是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通计算机实现的智能。该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。

一般教材中的定义领域是“智能代理(intelligent agent)的研究与设计”,智能代理是指一个可以观察周遭环境并做出行动以达致目标的系统。 约翰·麦卡锡于1955年的定义是 "制造智能机器的科学与工程."

人工智能的研究是高度技术性和专业及,各分支领域都是深入且各不相通的。

人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理,知识,规划,学习,交流,感知,移动和操作物体的能力等。强人工智能目前仍然是该领域的长远目标。目前比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化,逻辑,基于概率论和经济学的方法等等。

image.png

人工智能

人工智能概论

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、心灵(mind)(包括无意识的精神(unconscious_mind))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

人工智能目前在计算机领域内,得到了愈加广泛的发挥。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

人工智能的发展史

年代

20世纪40年代

20世纪50年代

20世纪60年代

20世纪70年代

20世纪80年代

20世纪90年代

计算机

1945 计算机(ENIAC)

1957 FORTRAN语言





人工智能研究


1953 博弈论
  1956 达特矛斯会议


1977 知识工程宣言

1982 第五代电脑计划开始

1991 人工神经网络

人工智能语言



1960 LISP语言

1973 PROLOG语言



知识表达




1973 生产系统
  1976 框架理论



专家系统



1965 DENDRAL

1975 MYCIN



人工智能研究课题

目前人工智能的研究方向已经被分成几个子领域,研究人员希望一个人工智能系统应该具有某些特定能力,以下将这些能力列出并说明。

演绎、推理和解决问题

早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用概率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。

对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的存储器或是运算时间。寻找更有效的算法是优先的人工智能研究项目。

人类解决问题的模式通常是用最快捷,直观的判断,而不是有意识的,一步一步的推导,早期人工智能研究通常使用逐步推导的方式。人工智能研究已经于这种“次表征性的”解决问题方法取得进展:实体化Agent研究强调感知运动的重要性。神经网络研究试图以模拟人类和动物的大脑结构重现这种技能。

知识表示法

image.png

An ontology represents knowledge as a set of concepts within a domain and the relationships between those concepts.

规划

image.png

A hierarchical control systemis a form of control system in which a set of devices and governing software is arranged in a hierarchy.

智能Agent必须能够制定目标和实现这些目标。他们需要一种方法来建立一个可预测的世界模型(将整个世界状态用数学模型表现出来,并能预测它们的行为将如何改变这个世界),这样就可以选择功效最大的行为。在传统的规划问题中,智能Agent被假定它是世界中唯一具有影响力的,所以它要做出什么行为是已经确定的。但是,如果事实并非如此,它必须定期检查世界模型的状态是否和自己的预测相符合。如果不符合,它必须改变它的计划。因此智能代理必须具有在不确定结果的状态下推理的能力。在多Agent中,多个Agent规划以合作和竞争的方式去完成一定的目标,使用演化算法和群体智慧可以达成一个整体的突现行为目标。

学习

机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。

机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。

自然语言处理

自然语言处理(Natural Language Processing简称NLP)是人工智能和语言学领域的分支学科。在这此领域中探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。

自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

运动和控制

通过处理得到的数据,进行相关的控制与运动,使其达到预期的目的。

知觉

机器感知是指能够使用传感器所输入的资料(如照相机,麦克风,声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。另外还有语音识别、人脸辨识和物体辨识。

社交

image.png

Kismet, 一个具有表情等社交能力的机器人

情感和社交技能对于一个智能agent是很重要的。 首先,通过了解他们的动机和情感状态,代理人能够预测别人的行动(这涉及要素 博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)。此外,为了良好的人机互动,智慧代理人也需要表现出情绪来。至少它必须出现礼貌地和人类打交道。至少,它本身应该有正常的情绪。

创造力

一个人工智能的子领域,代表了理论(从哲学和心理学的角度)和实际(通过特定的实现产生的系统的输出是可以考虑的创意,或系统识别和评估创造力)所定义的创造力。 相关领域研究的包括了人工直觉和人工想象。

多元智能

大多数研究人员希望他们的研究最终将被纳入一个具有多元智能(称为强人工智能),结合以上所有的技能并且超越大部分人类的能力。有些人认为要达成以上目标,可能需要拟人化的特性,如人工意识或人工大脑。上述许多问题被认为是人工智能完整性:为了解决其中一个问题,你必须解决全部的问题。即使一个简单和特定的任务,如机器翻译,要求机器按照作者的论点(推理),知道什么是被人谈论(知识),忠实地再现作者的意图(情感计算)。因此,机器翻译被认为是具有人工智能完整性:它可能需要强人工智能,就像是人类一样。

强人工智能和弱人工智能

人工智能的一个比较流行的定义,也是该领域较早的定义,是由当时麻省理工学院的约翰·麦卡锡在1956年的达特矛斯会议上提出的:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。

强人工智能

强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:

§ 类人的人工智能,即机器的思考和推理就像人的思维一样。

§ 非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。

弱人工智能

弱人工智能观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。

强人工智能的研究目前处于停滞不前的状态下。人工智能研究者不一定同意弱人工智能,也不一定在乎或者了解强人工智能和弱人工智能的内容与差别。就现下的人工智能研究领域来看,研究者已大量造出看起来像是智能的机器,取得相当丰硕的理论上和实质上的成果。

对强人工智能的哲学争论

“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:

“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J Searle in Minds Brains and Programs. The Behavioral and Brain Sciences, vol. 3, 1980)

关于强人工智能的争论,不同于更广义的一元论和二元论的争论。其争论要点是:如果一台机器的唯一工作原理就是转换编码数据,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是转换数据,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。

也有哲学家持不同的观点。丹尼尔·丹尼特在其著作意识的解释(Consciousness Explained)里认为,人也不过是一台有灵魂的机器而已,为什么我们认为:“人可以有智能,而普通机器就不能”呢?他认为像上述的数据转换机器是有可能有思维和意识的。

有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如Simon Blackburn在其哲学入门教材 Think 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。Blackburn 认为这是一个主观认定的问题。

需要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。

研究方法

目前没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的? 智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?

智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理? John Haugeland提出了GOFAI(出色的老式人工智能)的概念,也提议人工智能应归类为synthetic intelligence,这个概念后来被某些非GOFAI研究者采纳。

控制论与大脑模拟

20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控制论之间的联系。其中还造出一些使用电子网络构造的初步智能,如W. Grey Walter的turtles和Johns Hopkins Beast。 这些研究者还经常在普林斯顿大学和英国的Ratio Club举行技术协会会议.直到1960, 大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。

符号处理

当20世纪50年代,数字计算机研制成功,研究者开始探索人类智能是否能简化成符号处理。研究主要集中在卡内基梅隆大学, 斯坦福大学和麻省理工学院,而各自有独立的研究风格。John Haugeland称这些方法为GOFAI(出色的老式人工智能)。60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。基于控制论或神经网络的方法则置于次要。60~70年代的研究者确信符号方法最终可以成功创造强人工智能的机器,同时这也是他们的目标。

认知模拟

经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能的基本原理打下基础,如认知科学, 运筹学和经营科学。他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。这方法一直在卡内基梅隆大学沿袭下来,并在80年代于Soar发展到高峰。

基于逻辑

不像艾伦·纽厄尔和赫伯特·西蒙,John McCarthy认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示, 智能规划和机器学习致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言Prolog和逻辑编程科学。

反逻辑

斯坦福大学的研究者 (如马文·闵斯基和西摩尔·派普特)发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行为。Roger Schank 描述他们的“反逻辑”方法为 "scruffy" .常识知识库 (如Doug Lenat的Cyc)就是"scruffy"AI的例子,因为他们必须人工一次编写一个复杂的概念。

基于知识

大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能软件形式。 “知识革命”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。

子符号方法

80年代符号人工智能停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。很多研究者开始关注子符号方法解决特定的人工智能问题。

自下而上, 接口agent,嵌入环境(机器人),行为主义,新式AI

机器人领域相关的研究者,如Rodney Brooks,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。

计算智能

80年代中David Rumelhart 等再次提出神经网络和联结主义.这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。

统计学方法

90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是近期人工智能成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。Stuart J. Russell和Peter Norvig指出这些进步不亚于“革命”和“neats的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。

集成方法

智能agent范式

智能agent是一个会感知环境并做出行动以达致目标的系统。最简单的智能agent是那些可以解决特定问题的程序。更复杂的agent包括人类和人类组织(如公司)。这些范式可以让研究者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的agent可以使用任何可行的方法-一些agent用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用abstract agents的概念)。90年代智能agent范式被广泛接受。

agent体系结构和认知体系结构

研究者设计出一些系统来处理多angent系统中智能agent之间的相互作用。一个系统中包含符号和子符号部分的系统称为混合智能系统 ,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号AI 和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。Rodney Brooks的 subsumption architecture就是一个早期的分级系统计划。

实际应用

机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划等。

学科范畴

人工智能是一门边沿学科,属于自然科学和社会科学的交叉。

涉及学科

§ 哲学和认知科学

§ 数学

§ 心理学

§ 计算机科学

§ 控制论

§ 决定论

§ 不确定性原理

研究范畴

§ 自然语言处理(NLP; Natural Language Processing)

§ 知识表现(Knowledge Representation)

§ 智能搜索(Intelligent Search)

§ 推理

§ 规划(Planning)

§ 机器学习(Machine Learning)

§ 增强式学习(Reinforcement Learning)

§ 知识获取

§ 感知问题

§ 模式识别

§ 逻辑程序设计

§ 软计算(Soft Computing)

§ 不精确和不确定的管理

§ 人工生命(Artificial Life)

§ 人工神经网络(Artificial Neural Network)

§ 复杂系统

§ 遗传算法

§ 资料挖掘(Data Mining)

§ 模糊控制

应用领域

§ 智能控制

§ 机器人学

§ 语言和图像理解

§ 遗传编程

§ 法学资讯系统

首页
84162741QQ
联系